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Are different kinds of stimuli (for example, different classes of
geometric images or naturalistic images) encoded differently by
visual cortex, or are the principles of encoding the same for all
stimuli? We examine two response properties: (1) the range of
spike counts that can be elicited from a neuron in epochs
representative of short periods of fixation (up to 400 msec), and
(2) the relation between mean and variance of spike counts
elicited by different stimuli, that together characterize the infor-
mation processing capabilities of a neuron using the spike
count code. In monkey primary visual cortex (V1) complex cells,
we examine responses elicited by static stimuli of four kinds
(photographic images, bars, gratings, and Walsh patterns); in
area TE of inferior temporal cortex, we examine responses
elicited by static stimuli in the sample, nonmatch, and match

phases of a delayed match-to-sample task. In each area, the
ranges of mean spike counts and the relation between mean
and variance of spike counts elicited are sufficiently similar
across experimental conditions that information transmission is
unaffected by the differences across stimulus set or behavioral
conditions [although in 10 of 27 (37%) of the V1 neurons there
are statistically significant but small differences, the median
difference in transmitted information for these neurons was
0.9%]. Encoding therefore appears to be consistent across
experimental conditions for neurons in both V1 and TE, and
downstream neurons could decode all incoming signals using a
single set of rules.
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Many different kinds of visual stimuli are used in neurophysio-
logical experiments. This raises the question of whether results
obtained using one class of stimuli can be expected to hold for
others. For example, photographic or naturalistic images might
somehow be processed differently from geometric stimuli fre-
quently used in experiments. Previously, we have shown that
knowledge of the operating range of the responses of a neuron,
along with the linear relation between log(mean) and log(vari-
ance) of spike counts elicited by different stimuli (Dean, 1981;
Tolhurst et al., 1981, 1983; van Kan et al., 1985; Vogels et al.,
1989; Britten et al., 1993; Levine et al., 1996; Bair and O’Keefe,
1998; Gershon et al., 1998; Lee et al., 1998), characterizes the
information processing capacity of a neuron using the spike count
code (Gershon et al., 1998; Wiener and Richmond, 1998). If
different classes of stimuli are encoded differently, responses to
those classes of stimuli might have different operating ranges
and/or might give rise to a different relation between mean and
variance than observed for other stimuli. In this paper, we address
this question in primary visual cortex (V1) of awake monkeys. We
also examine how behavioral context affects visual responses in
area TE of inferior temporal cortex.

We examine operating range and the relation between mean
and variance in responses (here, spike counts) that are elicited
from V1 by four kinds of stimuli: three kinds of geometric stimuli,
i.e., bars, sine-wave gratings, and Walsh patterns, and photo-

graphic images, which are often used to study the statistics and
processing of natural images (Field, 1987; Atick and Redlich,
1990, 1992; Rolls and Tovee, 1995; Dan et al., 1996; Olshausen
and Field, 1996b; Bell and Sejnowski, 1997; van Hateren and
Ruderman, 1998; van Hateren and van der Schaaf, 1998; Vinje
and Gallant, 2000). In area TE, in which the physical properties of
stimuli are integrated with the behavioral context in which they
are viewed (Spitzer and Richmond, 1991; Eskandar et al., 1992;
Chelazzi et al., 1998; Liu and Richmond, 2000), we examine
whether behavioral context (whether an animal is in the sample,
nonmatch, or match phase of a delayed match-to-sample task)
affects those same response properties. We find significant but
small differences in range of mean spike counts elicited from V1
neurons by stimuli of different kinds and, in 10 of 27 neurons, in
the relation between log(mean) and log(variance). Although the
differences in the mean–variance relation do not affect the ability
of the neuron to distinguish among stimuli, the differences in
range of mean spike counts make it slightly more difficult to use
the responses of the neuron to distinguish among Walsh patterns
or photographic images than to distinguish among bar or grating
stimuli. Estimates of the information processing capacity of the
neuron are consistent across stimulus sets. We find small but
significant differences in the largest mean counts that are elicited
from neurons in TE, but not in the relation between mean and
variance in different behavioral contexts.

MATERIALS AND METHODS
Data collection
V1. Responses were recorded using standard single-electrode techniques
from complex cells in primary visual cortex of two awake rhesus mon-
keys. At the beginning of each trial, a fixation point appeared on the
screen. One hundred milliseconds after the monkey fixated the point, a
stimulus was flashed on the receptive field of the neuron for 300 msec and
then replaced with the background. The monkey was rewarded for
fixating within 0.5° of the fixation point from the appearance of the
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fixation point until the stimulus disappeared and was not required to
react to the stimulus in any way. After a delay of 300 msec, the next trial
began.

Receptive fields were mapped by hand using bar stimuli and were
located 1.5–3° from the fovea in one monkey and 5–6° from the fovea in
the other. Stimuli were always 3.5° on a side, and they covered the
receptive field and part of the surround. The stimuli that were used (Fig.
1) included 32 oriented bars ( A), 32 sine-wave gratings ( B), 32 Walsh
patterns ( C), and 32 photographic images ( D). Although it is still a small

subset of all possible stimuli, this is, to our knowledge, the most extensive
set of stimuli used to examine the mean–variance relation in monkey
primary visual cortex. For each neuron, each stimulus was presented on
a video monitor in randomized order approximately the same number of
times; the median number of presentations per stimulus ranged from 8 to
52 (median 14) in different neurons. No significant differences were
found between the results from the two monkeys, so we present data from
both together.

Spikes were counted in a 300 msec window starting at stimulus onset.
We use this period because during normal primate vision, a new image
appears on each receptive field one to three times per second because of
saccadic eye movement, after which the image is kept nearly still on the
retina (compared to saccade velocities).

TE. Responses were recorded from neurons in visual area TE while a
monkey performed a sequential delayed match-to-sample task using eight
Walsh patterns (Fig. 1 E). The monkey touched a contact lever to start
each trial; a fixation point appeared at the center of a screen immediately.
The monkey was required to fixate within �5° of this spot for the entire
trial. As soon as the monkey fixated the fixation point, the fixation point
was replaced by a sample Walsh pattern 8.5° on a side, followed by up to
two nonmatching patterns and a repeat of the original (now matching)
pattern. When the original stimulus reappeared, the monkey was re-
quired to release the bar within 2 sec to receive a reward. Stimuli were
displayed for 500–1000 msec, with 300–800 msec between stimuli. Fur-
ther experimental details can be found in Liu and Richmond (2000).
Following Liu and Richmond (2000), we counted spikes from 70 to 470
msec after stimulus onset; the delay allows for response latency in area
TE. The median number of presentations per stimulus ranged from 20 to
64 (median 48) in different neurons.

Eye position. Eye position was measured every 8 msec using a magnetic
search coil. Trials were divided according to whether or not eye position
remained within a square region 6 min of arc on a side (the smallest
difference definitely detectable by our eye coil) during the entire trial.
Average eye position and amount of eye movement during a trial were
unrelated to which stimulus was presented, the group to which the
presented stimulus belonged in V1, and behavioral condition in TE
(ANOVA; p � 0.05).

All work was conducted in accordance with the National Institutes of
Health animal care guidelines and approved by the National Institute of
Mental Health Animal Care and Use Committee.

Regression analysis
For each neuron, each stimulus produces a sample mean spike count, �i ,
and a sample variance of spike count, � i

2, where the subscript i labels
stimulus. We fit the line log � 2 � b � m log � to the set of points (�i , � i

2).
Residuals were weighted by the estimated variance of the logarithm of
the variance (which depends on the number of trials available for each
stimulus; see below). The logarithmic transformation of means and
variances makes the regression residuals more nearly uniform across the
range of the mean responses (so that the data more closely conform to
the assumptions underlying the regression analysis) and ensures that the
model can never predict variances �0 (because the model is equivalent
to �2 � �b e a). A model using Fano factors to relate the mean and
variance also cannot predict variances �0 but does not make the regres-
sion residuals uniform across the range of mean responses and is sub-
stantially less compact than the regression model because a separate
Fano factor is needed for each stimulus (the factors for different stimuli
span an order of magnitude in our data from both V1 and TE). Estimates
of log(mean) and log(variance) obtained by taking the logarithm of the
sample mean and variance are biased and result in underestimation of
the variance. We corrected for the bias using a Taylor series expansion
(Kendall and Stuart, 1961); only a few terms are needed for good results.

Estimates of log(mean) and log(variance) of spike count from finite
samples are uncertain. Standard regression methods assume that one
quantity (the independent variable) is known without uncertainty. To
check whether the uncertainty of the mean makes a difference when
using real responses, we performed our analyses using both standard
regression methods [with log(mean) of spike count as the independent
variable] and regression methods designed for data with uncertainty in
both variables (Fuller, 1987; Ripley and Thompson, 1987). One advan-
tage of these techniques is that they treat the two variables symmetri-
cally; the same line is obtained no matter which quantity is thought of as
the dependent variable and which the independent variable. Both methods
require estimates of the uncertainty with which the variance of spike count
is known. The sample variance S 2 is distributed as (� 2/(n � 1)) � n�1

2 ,

Figure 1. Stimuli used in the experiments. For the experiment in V1, the
stimulus set consisted of 32 oriented bars (A), 32 sine-wave gratings (B),
32 Walsh patterns (C), and 32 photographic images (D). All stimuli
except the bars were equiluminant with the background at 1.2 cd/m 2. Bars
appeared at luminances of 0.08, 0.63, 1.78, and 2.19 cd/m 2. The brightest
bars had a contrast [measured as (max � min)/(max � min) of luminance]
of 87.2%, the gratings had a contrast of 65.4%, the Walsh patterns had a
contrast of 96.4%, and the contrasts of the pictures ranged from 56 to
96%. For the experiment in TE, eight Walsh patterns (E) were used. The
contrast was the same as for the Walsh patterns in the V1 experiments.
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where � n�1
2 is a chi-squared distribution with n � 1 degrees of free-

dom. This distribution has mean � 2, variance �4(2/(n � 1)), and SD
� 2�2/(n � 1), and for moderate values of n is approximately Gaussian.
Thus, we can approximate symmetric points of the distribution by E[S 2]
� k SD[S 2], or � 2 � k � 2�2/(n � 1), where k varies depending on the
percentile of the distribution desired (for example, for the 5th and 95th
percentiles, k � 1.645). The logarithms of these points are:

log�� 2�1 � k� 2
n � 1��� log � 2 � log�1 � k� 2

n � 1�
� log � 2 � k� 2

n � 1 .

Thus, the logarithm of the sample variance has mean approximately log
� 2 and variance approximately 2/(n � 1). Note that the variance of the
logarithm of the variance does not depend on the variance (even though
the variance of the variance does depend on the variance).

The methods designed to deal with uncertainty in both variables also
require estimates of the uncertainty with which the mean of spike count
is known. The sample mean of a normal distribution with true mean and
variance � and � 2 is normally distributed with mean � and variance � 2/n;
for non-normal distributions, this is an approximation. A calculation
similar to the one above for the sample variance shows that the mean and
variance of the distribution of the logarithm of the sample mean are
approximately log � and � 2/n�2, respectively.

We ask whether a model using a single regression line for all stimuli
predicts log(variance) of spike count from log(mean) of spike count less
well than does a model using a different regression line for each stimulus
set or behavioral condition. When ignoring uncertainty in the sample
mean, this is simply comparing an analysis of covariance of log(variance)
against log(mean) to an analysis of covariance of log(variance) against
log(mean) conditioned on stimulus set. We performed the standard
analysis of covariance both with and without weights on the basis of
estimated variance; the results are nearly identical. Here, we present
results calculated using the weights.

Information analysis
Information theory is a statistical approach that deals with the relation
between inputs, or stimuli, and outputs, or responses (Shannon and
Weaver, 1949; Cover and Thomas, 1991). The entropy of any signal X,
H(X) � �	xp(x) log2p(x), measured in bits, quantifies the uncertainty of
the signal. The conditional entropy H(R�S) measures the uncertainty in a
response if the stimulus s � S is known. The mutual, or transmitted,
information between a stimulus and a response, I(R; S), is the reduction
in uncertainty about which stimulus has been presented, provided by
knowing the response, or vice versa: I(R; S) � H(S) � H(S�R) � H(R) �
H(R�S).

Estimating transmitted information requires estimating the condi-
tional response probabilities p(r�s) for each response r (here, the number
of spikes elicited) and stimulus s. Reading these values from the response
histogram for each stimulus tends to overestimate information. Instead,
for V1 neurons, we estimate the conditional response probabilities by a
truncated Gaussian distribution with mean calculated from the observed
responses and variance predicted using the mean–variance relation (93%
consistent at the p � 0.05 level; � 2 test) (Gershon et al., 1998; Wiener and
Richmond, 1998). To avoid inaccuracy in our estimates of the means and
variances of the logarithms of the sample mean and sample variance, we
did not use data sets with fewer than eight trials per stimulus. This
method has been shown to give answers comparable to those obtained
using a well validated neural network method (Heller et al., 1995;
Golomb et al., 1997). Spike count distributions for the TE neurons are
not well modeled by the truncated Gaussian distribution (�50% consis-
tent at the p � 0.05 level; � 2 test), so we omit this calculation.

Transmitted information measures the outcome of a particular exper-
iment; changing the stimuli presented, or even the frequency with which
the stimuli are presented, will almost certainly change the transmitted
information. The channel capacity of a neuron, the maximum informa-
tion the neuron can transmit using a particular code and given the
reliability of its responses, does not change from experiment to experi-
ment, but estimating it requires knowing the distribution of responses to
all possible stimuli, not only to those stimuli presented. Using the relation
between log(mean) and log(variance), the mean response to a stimulus
determines the variance of responses to that stimulus. Because for V1
neurons the truncated Gaussian is a good model of the distributions of

spike counts elicited by stimuli (see Results), the mean and variance
together determine the entire response distribution. Therefore, stimuli
that elicit the same number of spikes on average are indistinguishable,
and every stimulus can be labeled by the mean number of spikes it elicits.
This provides a model of all possible response distributions. Given a
range of possible mean responses (a neuron can fire only a finite number
of action potentials in any counting window), channel capacity can be
estimated using this model by maximizing transmitted information over
stimulus presentation probabilities, as described in detail in Gershon et
al. (1998).

Analysis of scatter around the regression line
Scatter around a regression line represents variability not explained by
the regression. In our regression of log(variance) versus log(mean) of
spike count, we know of at least one source of such variability: both
means and variances are estimated from samples. The amount of scatter
resulting from this measurement problem is determined by the number
of trials available for estimating each mean and variance; as the number
of trials decreases, the scatter around the regression line increases.

Assuming that the regression is valid, that is, that log(variance) is a
linear function of log(mean), the mean residual sum of squares around
the log(variance) versus log(mean) regression line is an estimate of the
variance of log(variance) of the responses. Estimating means and vari-
ances using only a subset of the n points available will cause the sum of
squared residuals to increase. Only neurons with a median of at least
eight trials per stimulus in the subsampled data sets (so at least 16 trials
per stimulus in the full sets) were included in the analysis of scatter
around the regression line. We use simulated data to estimate how
quickly the sum of squared residuals decreases with increasing numbers
of trials per stimulus under the assumption that all of the scatter around
the regression line is attributable to finite sample size. The artificial
responses have the same number of trials per stimulus and are generated
from distributions with the same mean spike count, as observed for each
stimulus in the corresponding real neuron. However, in the artificial data,
the variance of spike count for each stimulus is calculated from the
observed mean of spike count using the regression line relating log(vari-
ance) and log(mean), and spike counts are generated by sampling from a
truncated Gaussian distribution with the given mean and variance. Thus,
in the artificial data, all scatter around the mean–variance regression line
arises from sample size effects only.

If the residual sum of squares in the real data increases less quickly
than expected based on the artificial data, then some of the scatter
around the line is not caused by sampling. (We do not know or speculate
here on the source of this nonsampling variance.) The nonsample vari-
ance c can be obtained by solving k � (aRSSpart � c)/(aRSSfull � c), where
aRSSfull and aRSSpart are the residual sums of squares from regressions
from full and subsampled artificial data sets, respectively, and k is the
ratio RSSpart /RSSfull measured from the actual data. The portion p of
residual sums of squares attributable to sampling can then be calculated,
and the total portion of variance explained is r 2 � p(1 � r 2), where the
first term is the usual r 2 from the regression and the second term
represents the variability explained by sampling. Simulations show the
results of this method to be unbiased.

The rate of change of the residual sum of squares, and therefore the
percent of scatter due to sampling, can also be estimated using the
formulas given above for uncertainty of the measured sample variance.
Tests using simulated data (for which all scatter is attributable to sam-
pling effects) show that an analysis based on the formulas overestimates
(by a few percent) the percent of scatter attributable to sampling (we
believe this overestimation is attributable to the fact that our data are
truncated Gaussians rather than true Gaussians). Consistent with this,
for the actual V1 data the estimated percent of scatter attributable to
sampling is higher using the formulas than based on the simulations (see
Results). Thus, we regard the estimate based on the formulas as an upper
bound and the estimate based on simulations as our best guess. Because
the TE data are not well modeled by the truncated Gaussian distribution,
we omit this analysis for TE.

Principal component analysis
Principal component analysis (Ahmed and Rao, 1975) can be used to
compress a data set. The first few principal components of spike train
data reflect aspects of the temporal structure of the spike trains (Optican
and Richmond, 1987; Richmond and Optican, 1987, 1990; Tovee et al.,
1993; Heller et al., 1995; Tovee and Rolls, 1995). In Wiener and Rich-
mond (1999), we showed that the first and second principal components
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of neuronal responses obey a version of the mean–variance relation: the
logarithm of the variance of each principal component is linearly related
to the logarithm of the mean of the first principal component. The
regression and analysis of scatter around the regression line can be
performed in the same way as described above.

To find the principal components of these data, we low-pass filtered
each spike train by convolution with a Gaussian distribution with SD of
5 msec and resampled at 1 msec resolution to create a spike density
function. The principal components were calculated by performing sin-
gular value decomposition on the matrix of spike density functions.

RESULTS
Our data set included 27 complex cells from V1 (16 from one
monkey, 11 from another) and 20 neurons from area TE. As
explained in Materials and Methods, we performed the analyses
using both standard regression methods and methods designed
for situations in which both variables are measured with uncer-
tainty. The results using the two regression methods were very
similar. We present the results obtained using standard regression
methods. At the end of this section, we compare results using the
two regression methods.

Distribution of mean responses
It is well known that different stimuli elicit different numbers of
spikes, but this does not require that stimuli from different sets
consistently elicit different numbers of spikes. Across the 27 V1
neurons, the stimulus set significantly affected the median of
mean spike counts elicited (Fig. 2) (Friedman test; p � 0.05); the
same was true in 26 of the individual neurons (Kruskal–Wallis
test; p � 0.05). Stimulus set accounts for 11% [median; interquar-
tile range (iqr), 5–18%] of the variability in spike counts. The
least effective photographic images and Walsh patterns used in
these experiments elicited mean spike counts larger than those
elicited by the least effective bar and grating stimuli; that is, Walsh
patterns and photographic images were less likely than bars and

gratings to elicit mean responses near zero. We did not explicitly
search for optimal bar or grating stimuli for the neurons we
recorded. Figure 2 shows that the median of mean spike counts
was between 20 and 27 spikes per second. Reich et al. (2001),
using optimal stationary gratings (the stimuli in their experiment
most comparable to our stationary stimuli), elicited median firing
rates of 23 spikes per second from V1 complex cells. The 75th
percentile across neurons of mean spike counts elicited in our
experiments is 20 spikes in a 300 msec period, or about 66 spikes
per second; the 95th percentile was about 43 spikes per second.
Reich et al. (2001) report that the 75th percentile across neurons
of mean firing rate was between 40 and 45 spikes per second using
an optimal stationary grating, and the 95th percentile was 80
spikes per second (their Fig. 3D). Thus the distribution of mean
responses that we observed was similar to those obtained when an
explicit effort to identify the optimal stimulus was made.

Behavioral context did not significantly affect the median of
mean spike counts across TE neurons (Fig. 3) (Friedman test; p �
0.05), or in any individual TE neuron (Kruskal–Wallis test; p �
0.05). However, behavioral context did affect the largest mean
responses elicited by stimuli; the largest mean spike counts in the
match condition were larger than the largest responses in the
sample and nonmatch conditions (Friedman test on 95th percen-
tile of mean responses; p � 0.05).

Consistency of the mean–variance relation across
stimulus sets and behavioral conditions
To determine whether a single regression line adequately de-
scribed responses under different conditions, we examined two
models for each set of responses. One model used a single
regression line to predict log(variance) of spike count from log-
(mean) of spike count for all stimuli presented to a particular
neuron. The other model used a different regression line to
predict log(variance) of spike count from log(mean) of spike
count for each stimulus set in V1 or each behavioral condition in
TE. If different conditions do give rise to different relations
between log(mean) and log(variance), the model using several
regressions should predict log(variance) significantly better than
the model with a single regression. We test this by comparing the
variance of the residuals from the two models. The variance of

Figure 2. Distribution across 27 V1 neurons of mean responses elicited
by bars, gratings, Walsh patterns, and photographic images. The line in
the middle of each shaded box shows the median response. The notch
shows a 95% confidence interval around the median (if two notches do
not overlap vertically, the corresponding medians are different at the 5%
level). The bottom and top edges of the boxes show the 25th and 75th
percentiles, and the extended whiskers show 1.5 times the interquartile
range. Mean responses outside a range 1.5 times the width of the inter-
quartile range from the median are shown as separate points. The fifth
percentile and median of mean responses elicited by bars and gratings are
lower than the fifth percentile and median of mean responses elicited by
Walsh patterns and photographic images, although the 95th percentile of
mean responses is not distinguishable across the four stimulus sets. Each
shaded box is based on 896 measurements: the mean response of each of
27 neurons to each of the 32 stimuli in each set. We have no explanation
for the greater number of outlier points for bars as opposed to the other
stimulus sets.

Figure 3. Distribution across 20 TE neurons of mean responses elicited
by stimuli in the sample, nonmatch, and match phases of a delayed
match-to-sample task. For interpretation of boxplots, see Figure 2. The
distributions of responses are not distinguishable across the three behav-
ioral conditions. Each shaded box is based on 160 responses: the mean
response of each of 20 neurons to each of the eight stimuli when viewed
in the indicated phase of the task.
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the residuals is the residual sum of squares divided by the residual
degrees of freedom. A model using several lines has fewer resid-
ual degrees of freedom than a model using a single line, so the
residual sum of squares must decrease more quickly than the
residual degrees of freedom to justify using the additional
parameters.

In V1, we asked whether a model using four regressions, one
for each stimulus set, predicted log(variance) of spike count from
log(mean) of spike count significantly better than a model using a
single regression for all four data sets. In 17 of 27 neurons, the
two models were statistically indistinguishable (Fig. 4, top), but in
10 of 27 neurons, the reduction in sum of squared errors did
justify using the extra parameters ( f test; p � 0.05) (Fig. 4,
bottom). Even in the neurons in which the change was significant,
however, the increase in percentage of variance explained was

small (Fig. 5, Table 1). Across all stimuli from all V1 neurons, the
model using a single regression explained about two-thirds of the
variance (median r 2, 0.65; iqr, 0.44–0.76), and the model using
four regressions explained only slightly more (median r2, 0.65; iqr,
0.49–0.79). Across all neurons, the median increase in r2 was 0.03
(iqr, 0.01–0.05); for only those neurons in which the four-
regression model predicted variance significantly better than the
single-regression model, the median increase in r2 was 0.06 (iqr,
0.04–0.07). We will show below that these small changes in
predicted variance do not affect the ability of the neuron to
distinguish among different stimuli. Therefore, for each neuron
only a single regression line is needed to describe the relation
between log(mean) and log(variance) of spike count for stimuli of
all four kinds. Across 27 V1 neurons, the median intercept of the
single regression line is 0.6 (iqr, 0.4–0.8), and the median slope is
1.1 (iqr, 1.0–1.2).

Although in 10 of 27 neurons, using four regression lines
predicts variance significantly better than using a single regression
line, naturalistic (photographic) stimuli are not consistently
treated differently from the geometric stimuli. Examining models
using two regression lines, one for stimuli from one set and
another for stimuli from the other three sets, we found that bars,
gratings, Walsh patterns, and photographic images were distin-
guishable from all other stimuli in 4, 7, 8, and 5 of the 10 neurons,
respectively. There was no clear pattern to which stimulus sets
were distinguishable from others in individual neurons.

In area TE, we asked whether a model using three regression
lines, one each for the sample, nonmatch, and match task condi-
tions, predicted log(variance) from log(mean) significantly better
than a model using a single regression line for all task conditions
together (Fig. 6). In 19 of the 20 neurons, the improvement in
prediction did not justify using the extra parameters (Table 2),
and 1 of 20 neurons is expected to show an effect at the p � 0.05
level by chance. Thus, we conclude that for neurons in TE, only
a single regression line is needed to describe the responses in all
three behavioral contexts. Across 20 TE neurons, the median

Figure 4. Relation between log(mean) and log(variance) in two V1
neurons: one in which the model using four regression lines is not
significantly better than the model using a single regression line (top), and
one in which it is better (bottom). x-, y-axes, Mean and variance of number
of spikes elicited by each stimulus on a logarithmic scale. Note the
different scales on the x- and y-axes in the two panels. Each panel shows
log(mean) versus log(variance) for each of four stimulus sets in a single
V1 neuron. Oriented bars, Red squares; oriented gratings, blue circles;
Walsh patterns, green triangles; photographic images, purple diamonds.
Stimulus-set specific regression lines are in the corresponding colors,
extended to the edges of the plot for visibility. The regression line for all
stimuli taken together is shown in black. Colored bars at the bottom show
the range of means for each stimulus set. The neurons shown have the
median p values for the f test comparing the model using a single
regression line to the model using four regression lines among those
neurons for which the f test is (bottom) and is not (top) significant.

Figure 5. Portion of variance explained (r 2) increases for a model using
a separate log(variance) versus log(mean) regression for each stimulus set
as compared to a model using a single log(variance) versus log(mean)
regression for all stimuli, for 27 V1 neurons. The horizontal and vertical
axes show the r 2 values for the single-regression and multiple-regression
models. Filled circles represent neurons for which the improvement in
prediction of log(variance) from log(mean) is significant ( f test, p � 0.05),
and open circles represent those for which it is not.
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intercept of the regression line is 0.3 (iqr, 0.0–0.6), and the
median slope is 1.3 (iqr, 1.2–1.5).

It has been reported that instability of eye position during
presentation of an optimal moving bar increases response vari-
ability in V1 neurons (Gur et al., 1997). If this happened for all
stimuli generally, it might affect the mean–variance relation. For
the 16 V1 neurons with 13 or more trials per stimulus, we sorted
the data for each stimulus into trials during which eye position
was very stable and those during which it was less stable (see
Materials and Methods). Each stimulus was represented by two
points: one from those trials during which eye position was more
stable, and one from those trials during which eye position was
less stable. There was no systematic increase in variance when eye
position was less stable (variance increased in 51% of stimuli and
decreased in 49%). In each of the 16 neurons, we calculated
log(variance) versus log(mean) regressions for all trials taken
together and for the two subsets individually. Only stimuli with
five or more trials in each subset were included in this analysis
(median number of stimuli included 108 of 128; iqr, 72–126). As
expected given that no systematic change in variance was ob-
served with eye movement, the sum of squared errors was indis-
tinguishable whether a single regression line was used for trials in
both subsets or a separate regression line was used for each subset
( p � 0.05; f test). Thus, only a single regression line is needed to
describe the mean–variance relation in both subsets (Fig. 7). This
is consistent with the findings of Bair and O’Keefe (1998) in area
MT. In our data, the trials with more stable fixation show greater
scatter around the regression line than the trials with less stable
fixation because there were fewer such trials: 30% of trials in each
neuron were contained in a region 6 min of arc on a side (median;
iqr, 26–36%). (Scatter around the regression line is discussed
later in Results.) For completeness, we separated trials with more
and less stable fixation for the 15 of 20 TE neurons for which there
were sufficient numbers of trials per stimulus in both conditions;
as in V1, only a single regression was needed to describe the
mean–variance relation in both subsets.

Transmitted information and channel capacity
Transmitted information measures how well an observer can
guess which stimulus elicited any particular observed response
(here, spike count). For each V1 neuron, transmitted information
was calculated for all stimuli together and for the four stimulus
sets individually. The information for a particular stimulus set
was calculated using the relation between mean and variance
measured from stimuli from that set only; the information for all

stimuli together was estimated twice, once using the model with
a single regression for all stimuli and once using the model with
a separate regression for each of the four stimulus sets. The
information for all stimuli together was nearly identical no matter
which model was used (difference of 0.6% median; iqr, 0.1–1.2%),
even for the 10 of 27 neurons for which the model with four
regressions predicted variance significantly better than the model
with a single regression (difference of 0.9% median; iqr, 0.2%–
1.1%). However, the information that was transmitted about the
individual stimulus sets varied a great deal (Fig. 8) (Friedman
test; p � 0.001). The differences in information are attributable
not to differences in the relation between mean and variance for
the stimulus sets (which make very little difference in information
when all stimuli are considered), but rather to the different mean
responses elicited by stimuli of different kinds (Fig. 2).

The least effective Walsh patterns and photographic images do
not elicit mean responses as small as those elicited by the least
effective bar and grating stimuli, whereas the most effective stim-

Figure 6. Responses obey a single mean–variance relation across behav-
ioral conditions in a TE neuron. x-, y-axes, Mean and variance of number
of spikes elicited by each stimulus on a logarithmic scale. Log(mean)
versus log(variance) for each of three task conditions in a single TE
neuron. Sample, Red squares; nonmatch, blue circles; match, green triangles.
Regression lines for individual conditions are shown in the corresponding
colors, extended to the edges of the plot for visibility. The regression line
for all conditions together is shown in black. Colored bars at the bottom
show the range of means for each task condition (sample, nonmatch, and
match). The neuron shown has the median p value for the f test comparing
the model using a single regression line to the model using three regres-
sion lines.

Table 1. Summary of r 2 for regression of log(variance) versus log(mean) for V1 neurons

Minimum First quartile Median Third quartile Maximum

r 2, single regression, 0–300 msec 0.27 0.44 0.65 0.76 0.90
r 2, four regressions, 0–300 msec 0.28 0.49 0.65 0.79 0.93
Change (all) 0.00 0.01 0.03 0.05 0.10
Change ( p � 0.05) 0.02 0.04 0.06 0.07 0.10
r 2, single regression, 0–150 msec 0.22 0.44 0.67 0.76 0.91
r 2, single regression, 151–300 msec 0.34 0.52 0.66 0.81 0.92

Columns show the minimum, first quartile, median, third quartile, and maximum values across 27 V1 neurons. First row,
Distribution of r 2 for the model using a single regression for all four stimulus sets, with counting window 0–300 msec after
stimulus onset. Second row, Distribution of r 2 for the model using a separate regression for each stimulus set, with counting
window 0–300 msec after stimulus onset. Third row, Distribution of increase in r 2 when going from the model using a single
regression to the model using four regressions. Fourth row, Same as third row, but only for the 10 of 27 neurons for which
the four-regression model predicts log(variance) from log(mean) significantly better than the single-regression model. Fifth
and sixth rows, Same as first row, but in two disjoint pieces of the original counting window: 0–150 msec after stimulus onset
(fifth row) and 151–300 msec after stimulus onset (sixth row).
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uli from each group elicit similar responses. This means that
mean responses to Walsh patterns and photographic images are,
in effect, crowded into a smaller range than mean responses to
bars and stimuli. Because response variance grows with response
mean, responses to Walsh patterns and photographic images are
on average also more variable. Thus, individual responses to
photographic images and Walsh patterns are less informative
about which stimulus was presented than individual responses to
bars and gratings.

Transmitted information describes the outcome of a particular
experiment. Channel capacity, which depends on the mean–
variance relation and the range of possible mean responses (Ger-
shon et al., 1998; Wiener and Richmond, 1998), is a more robust

measure of the information-processing capability of a neuron. For
each V1 neuron, we calculated channel capacity on the basis of
the mean–variance relation and dynamic range estimated from all
stimuli together, and on the basis of the mean–variance relation
and dynamic range estimated for each stimulus set separately.
Because a single regression describes the mean–variance relation
for all four stimulus sets, channel capacity depends mostly on the
estimate of the range of possible mean responses. Here, we
assume that the minimum possible mean response is zero (which
in some cases requires extrapolating the mean–variance relations
beyond the range of observed mean responses) and the maximum
possible mean response is 25% larger than the largest observed
mean response (Fig. 9, first box in each set). We have shown
previously (Wiener and Richmond, 1998) that estimates of chan-
nel capacity change relatively slowly with changes in the maxi-
mum mean response considered; here, if we assume the maximum
possible mean is only 10% larger than the largest observed mean

Figure 7. Responses obey a single mean–variance relation for more and
less stable fixation. x-, y-axes, Mean and variance of number of spikes
elicited by each stimulus on a logarithmic scale. Log(mean) versus log-
(variance) for trials during which eye position remained within a square 6
min of arc on a side during the entire trial (�), and for trials during which
eye position ranged over a larger region (E) in a single V1 neuron.
Regression lines for the separate conditions are shown, using a dashed line
for the trials with more stable fixation, and a solid line for the trials with
less stable fixation. The solid line for trials with more stable fixation
merges with the regression line for both conditions taken together, which
is shown with a thicker solid line. The greater scatter around the line for
trials with more stable fixation (�) than for trials with less stable fixation
(E) is explained by the fact that there were fewer trials with more stable
fixation: 30% of trials in each neuron were contained in a region 6 min of
arc on a side (median; iqr, 26–36%). The neuron shown has the median
p value for the f test comparing the model using a single regression line to
the model using two different regression lines.

Figure 8. Information transmitted by spike count about which of the
stimuli was presented, for all stimuli together and for each of the stimulus
sets separately, for neurons in V1. The vertical axis shows transmitted
information measured in bits. Each boxplot shows the distribution across
27 V1 neurons of information for the set of stimuli indicated on the x axis:
all stimuli together (using either a single regression for all four stimulus
sets or using a separate regression for each of the four stimulus sets), bar
stimuli alone, gratings alone, Walsh patterns alone, and photographic
images ( photo) alone. For interpretation of boxplots, see Figure 2. Re-
sponses become less informative as the range of distinct means becomes
smaller and the distributions of responses become more variable.

Table 2. Summary of r 2 for regression of log(variance) versus log(mean) for TE neurons

Minimum First quartile Median Third quartile Maximum

r 2, single regression, 70–470 msec 0.51 0.70 0.85 0.90 0.97
r 2, three regressions, 70–470 msec 0.55 0.77 0.86 0.92 0.98
Change (all) 0.001 0.01 0.02 0.04 0.11
r 2, single regression, 70–270 msec 0.55 0.74 0.78 0.91 0.96
r 2, single regression, 271–470 msec 0.18 0.74 0.87 0.92 0.97

Columns show the minimum, first quartile, median, third quartile, and maximum values across 20 TE neurons. First row,
Distribution of r 2 for the model using a single regression for all three behavioral conditions, with counting window 70–470
msec after stimulus onset. Second row, Distribution of r 2 for the model using a separate regression for each behavioral
condition, with counting window 70–470 msec after stimulus onset. Third row, Distribution of increase in r 2 when going
from the model using a single regression to the model using three regressions. Fourth and fifth rows, Same as first row, but
in two disjoint pieces of the original counting window: 70–270 msec after stimulus onset (fourth row) and 271–470 msec after
stimulus onset (fifth row).
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response, estimates of channel capacity drop by only 3.8% (me-
dian; iqr, 3.4–4.5%) (Fig. 9, second box in each set). This insen-
sitivity to the maximum mean is attributable to the fact that
responses with higher means are more variable than responses
with lower means, so allowing larger means yields diminishing
returns. The estimates for the different groups are indistinguish-
able no matter which upper bound is used (Friedman test; p �
0.05). Correspondingly, because responses with smaller means
are less variable, channel capacity is much more sensitive to the
smallest mean response allowed. If we assume that the minimum
achievable mean response is equal to the minimum observed
mean response (Fig. 9, third box in each set), the different esti-
mates of channel capacity are lower than the previous estimates
by 0.50 bits (median; iqr, 0.43–0.62; paired t test, p �� 0.01) and
are no longer statistically indistinguishable from one another
(Friedman test; p � 0.05), the estimates using only the Walsh
patterns having dropped more than the other estimates.

These results show the importance of the assumed minimum
achievable mean response for estimates of channel capacity. Even
when the same relation between mean and variance is used, a
change in the assumed minimum achievable mean can change the
estimate of channel capacity dramatically (Fig. 9, comparison
between the two lef t columns and the right column in each set).
The smaller the smallest observed mean response, the less dra-
matic the effect will be. Therefore, it is important in experiments
seeking to examine the information-processing capabilities of a
neuron to use a range of stimuli that elicit the largest possible range
of mean responses from a stimulus and, in particular, to include
stimuli that elicit few spikes as well as those that elicit many.

We cannot use these methods to calculate information or
channel capacity for the TE neurons, because we do not have a

good model for the spike count distributions from the TE neu-
rons. However, the fact that both the range of mean responses and
the relation between mean and variance are identical across the
three behavioral conditions suggests that the information content
of responses in the three conditions will be similar.

The mean–variance relation in different
counting windows
Our focus in this paper is whether the mean–variance relation for
spike counts in a particular counting window is consistent across
different stimulus sets in V1 and across different behavioral con-
ditions in TE. Above, we have come to the conclusion that for a
particular counting window (0–300 msec after stimulus onset in
V1, 70–470 msec after stimulus onset in TE), any differences in
the mean–variance relation are sufficiently small as to not affect

Figure 9. Channel capacity depends on the lowest allowed mean re-
sponse more than on stimulus set or highest allowed mean response in
neurons in V1. The lef t (darkest) box in each set shows the distribution
across 27 V1 neurons of channel capacity if the range of allowable mean
responses extends from 0 (no spikes ever elicited) to 1.25 times the
maximum observed mean response. The middle box shows channel capac-
ity if the range extends from 0 to 1.1 times the maximum observed mean
response. The right (lightest) box shows channel capacity if the range
extends from the minimum observed mean response to 1.25 times the
maximum observed mean response. Changing the minimum allowed
mean response has a much greater effect than changing the maximum
allowed mean response. For interpretation of boxplots, see Figure 2.

Figure 10. Consistency of the mean–variance relation in different count-
ing windows. The lef t and right panels show results for neurons from V1
and TE, respectively. The top panels show results for windows expanding
from a fixed start time (stimulus onset in V1, 70 msec after stimulus onset
in TE), and the bottom panels show results for sliding 50-msec-wide
windows starting at different times. In each panel, the horizontal axis
shows mean spike count (on a logarithmic scale), the vertical axis shows
the end of the counting window at 25 msec intervals (windows start at
stimulus onset in V1, and 70 msec after stimulus onset in TE), and gray
scale represents the variance (lighter means higher variance). Contours
representing variances of 2, 5, 10, 20, and 40 spikes per second squared are
also shown. The mean–variance relation at a particular time corresponds
to a horizontal slice through the plot. V1, The variance associated with a
particular mean spike count is larger in longer counting windows (with
fixed starting point). This increasing variance is also seen in sliding
windows. TE, The variance associated with a particular mean spike count
is larger in longer counting windows, but variance increases more slowly
than in V1. Again, the increase is seen in sliding windows as well.
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information transmission. Figure 10 shows the mean–variance
relation over time in representative neurons from V1 (lef t) and
TE (right). The horizontal axis shows mean response, the vertical
axis shows the end of the counting window, and gray scale and
contours show the variance predicted for each mean response by
the mean–variance relation. In both V1 and TE, the variance
associated with a particular mean spike count increases as the
window expands. Variance increases more rapidly in V1 neurons
than in TE neurons.

Although the relation between log(mean) and log(variance)
changes over time (Fig. 10), the explanatory power of the relation
does not change much; the r 2 values for the regressions are similar
for the full period analyzed and for the two half-periods (Tables
1, 2). In expanding windows, the number of neurons for which
using multiple regressions is justified [that is, for which the model
using multiple regressions predicts log(variance) from log(mean)
significantly ( f test; p � 0.05) better than the model using a single
regression] is similar to that found in the full window: 9–11 of 27
neurons in V1, and 0, 1, or 2 of 20 neurons in TE. In sliding
windows, up to 14 (in V1) or 4 (in TE) neurons show differences
among the mean–variance relations. However, in both expanding
and sliding windows in the V1 neurons, the small differences
found among the relations between mean and variance of spike
count in different windows did not affect information transmis-
sion; the amount of information found in the responses was nearly
identical, whether a single regression or multiple regressions were
used to estimate variance from mean. (As for the main counting
window, we cannot explicitly calculate information for TE neu-
rons using our model because the spike count distributions are
not well-modeled by a truncated Gaussian distribution.)

Analysis of scatter around the regression line
Although a single regression line can be used to predict log(vari-
ance) from log(mean) across stimulus sets in each V1 neuron, the
prediction is not perfect; substantial scatter around the regression
lines remains (Fig. 4). In the V1 neurons examined here, the
regression explained 65% of the variability of measured variance
(median r 2; iqr, 0.44–0.76). Thus 35% (median; iqr, 24–56%) of
the variability in the V1 neurons is seen as scatter around the
regression lines. As explained below, we estimate that about
two-thirds of this scatter can be attributed to sample size effects.

The amount of scatter around the regression line relating
log(mean) and log(variance) depends in part on the number of
trials per stimulus that are used to estimate the means and
variances; the more trials per stimulus, the less scatter. As ex-
plained in Materials and Methods, we estimated the measure-
ment effect of sample size (number of trials per stimulus) on
residual sum of squares around the regression line using artificial
data in which log(mean) and log(variance) are exactly linearly
related. In such artificial data, any change in residual sum of
squares can be attributed only to the measurement effect of
sample size. If the residual sums of squares do not increase as
rapidly in regressions subsampling the real data, we can conclude
that some of the scatter around the regression line has other
sources. In the V1 neurons, 70% (median; iqr, 58–78%) of the
residual sums of squares remaining after regression can be attrib-
uted to the measurement effects of sampling. (Using the formulas
rather than simulation, which gives an upper bound, the median
percent of scatter attributable to sampling is 75%, with iqr 63–
89%.) Thus, the regression relating log(mean) and log(variance)
is not only consistent across stimulus sets in V1 neurons; it is
actually better than it looks, because about two-thirds of the

scatter around the regression line is attributable to limited
sample size. As expected, the more trials available for estimat-
ing the variance, the smaller the percent of scatter attributable
to the measurement effect of sample size (Fig. 11). When both
the predictive power of the mean response and the measure-
ment effect of sample size are taken into account, only 13%
(median; iqr, 7–15%) of response variance in V1 neurons
remains to be explained by other factors.

We have shown that in some of the V1 neurons a model using
a separate regression line for each stimulus set predicts log(vari-
ance) from log(mean) significantly better than a model using a
single line for all four stimulus sets, although the improvement is
small. In the neurons for which the lines differed most, slightly
more scatter could be attributed to sampling when residuals were
calculated as deviation from the four lines individually rather
than from a single line. In this group-by-group analysis, the
percent of scatter attributable to sampling was 73% (median; iqr,
70–80%), which, when combined with the predictive power of the
mean response, left only 7% (median; iqr, 5–12%) of the scatter
to be explained by other factors. In five V1 neurons, there were
sufficient trials to analyze scatter around the regression line
separately for trials during which fixation was very stable and
trials during which fixation was less stable (see Materials and
Methods). Analyzing scatter separately for these two subsets
resulted in very little additional variance explained.

Because spike count has been shown to influence spike timing
(Oram et al., 1999; Wiener and Richmond, 1999), it is natural to
wonder whether these results about the scatter around the line
relating log(mean) and log(variance) of spike count carry over in
some way to results for timing. Wiener and Richmond (1999)
showed that the logarithms of variances of principal components
of neural responses are related to the logarithm of the mean of
the first principal component. The first principal component is
highly correlated with spike count, so we do not examine it
further here. The second principal component indicates whether
the spikes in a response tend to come early or late in the response
(Optican and Richmond, 1987; Wiener and Richmond, 1998). As

Figure 11. The amount of scatter around the regression line that can be
attributed to the measurement effect of sample size decreases with in-
creasing numbers of trials per stimulus. Each point shows the result for
one V1 neuron. x-axis, Median number of trials per stimulus; y-axis,
percent of scatter around the regression line attributable to sampling.
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in Wiener and Richmond (1999), the r 2 values for the regression
of log(variance) of the second principal component against log-
(mean) of the first principal component are lower than for the
regression of log(variance) versus log(mean) of spike count: r2 �
0.12 (median; iqr, 0.03–0.21) across the 27 V1 neurons. Scatter
around the regression line depends chiefly on the number of trials
from which each mean and variance is estimated (see Materials
and Methods). Therefore, we expect that the scatter around the
regression line relating log(variance) of the second principal
component to log(mean) of the first principal component should
be similar to the scatter around the regression line relating
log(variance) and log(mean) of spike count. Across the 27 V1
neurons, 64% (median; iqr, 52–75%) of the scatter around the
regression line relating log(variance) of the second principal
component to log(mean) of the first principal component is at-
tributable to sampling effects, leaving 32% of the variability to be
explained by other factors (median; iqr, 26–42%). This means
that most of the variability in a low-frequency measure of re-
sponse timing is related to average spike count, just as is the
variability of spike count itself.

Different regression methods give similar results
When regression methods taking into account uncertainty in both
variables are used, the sums of squared residuals in the x direction
(around the logarithms of the means) are much smaller than the
sums of squared residuals in the y direction (around the loga-
rithms of the variances), by a factor of 33 (median; iqr, 14–110) in
the V1 neurons and by a factor of 13 (median; iqr, 7–24) in the TE
neurons. This suggests that taking into account uncertainty in the
mean should have a relatively small effect and differences be-
tween results using the two regression methods will be small.

To assess the practical effect of the uncertainty of estimates of
mean response, we used both standard regression methods and
methods designed for data with uncertainty in both variables
(Fuller, 1987; Ripley and Thompson, 1987). Estimates of the
slope using these methods are larger than those predicted using
standard regression methods, by 10% (median; iqr, 7–17%) in the
V1 neurons and by 6% (median; iqr, 3–12%) in the TE neurons.

However, the intercepts also change, and the combined effect in
the range of data available is quite small (median difference of
predicted variance �0.2, iqr, �0.9 to 2.2), with the nonstandard
regression tending to estimate lower variances than the standard
regression for low mean spike count (Fig. 12).

The main result of this paper, that the relation between log-
(mean) and log(variance) is consistent across multiple stimulus
sets in V1 neurons and across behavioral conditions in TE neu-
rons, still holds when regression methods accounting for uncer-
tainty in both variables are used. Furthermore, the amount of
scatter around the regression line that can be attributed to the
measurement effect of sample size is quantitatively similar
whether the regression methods account for the uncertainty in
estimates of the logarithm of the mean or ignore it. In these V1
data, the measurement effect of sample size accounts for 70%
(median; iqr, 58–78%) of the sum of squared residuals around the
regression line when standard regression methods are used (as
reported above), and 67% (median; iqr, 61–80%) when uncer-
tainty in the sample mean is taken into account.

DISCUSSION
We have examined spike-count coding in single neurons in mon-
key primary visual cortex. We find that the previously observed
linear relation between log(mean) and log(variance) is sufficiently
consistent across a wide range of stationary black-and-white im-
ages (including photographic images); for practical purposes,
there is no reason to use more than a single relation. In particular,
the relation between mean and variance is not systematically
different for photographic images than for simple geometric stim-
uli. In area TE, the relation between mean and variance of spike
count and the distributions of mean responses to stimuli pre-
sented in the sample, nonmatch, and match phases of a delayed
match-to-sample task are statistically indistinguishable (Figs. 3,
6), consistent with the results of McAdams and Maunsell (1999).
The variance associated with a given mean increases with the
length of the counting window (Fig. 10). We do not know now the
reasons for this change in the mean–variance relation over time,
but correlations between firing rates at different times can cause
such an effect.

The relation between mean and variance is not, however, the
only factor affecting the ability of a neuron to transmit informa-
tion. In our experiments in V1 neurons, photographic images and
Walsh patterns elicited larger mean responses than bar and grat-
ing stimuli (Fig. 2). As a consequence, estimates of transmitted
information depend on which stimuli are presented (Fig. 8). If
four different researchers had conducted four different experi-
ments using our four stimulus sets, there might be controversy
over how much information neurons in V1 “really” transmit.
Estimates of channel capacity based on results from the different
stimulus sets are more consistent than estimates of transmitted
information (Fig. 9), because they depend only on two fundamen-
tal statistical properties of the responses: the relation between
mean and variance and the range of allowed mean responses. To
characterize the information processing capacity of a neuron, it is
important to elicit the largest possible range of mean responses,
particularly low mean responses. Thus, it is important to use as
large and varied a stimulus set as possible in neurophysiological
experiments.

We have also shown for V1 neurons that the relation between
mean and variance is better than it looks; approximately two-
thirds of the scatter around the log(variance) versus log(mean)
regression line is attributable to the measurement effect of sample

Figure 12. Regression lines calculated with and without uncertainty in
the mean are similar. The x- and y-axes show, on a logarithmic scale, the
means and variances of spike counts elicited from a single neuron by
different stimuli. The regression lines calculated using standard regression
methods (solid) and methods taking into account uncertainty in estimates
of both variables (dashed) are shown. Ignoring the uncertainty in esti-
mates of the sample mean biases the slope toward 0, but the effect is small.
The cell shown has the median change in slope among V1 neurons.
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size. Although we cannot perform such a quantitative analysis for
the TE neurons (because the spike count distributions in TE are
not well modeled by truncated Gaussian distributions, as are
those in V1), the variances of spike count distributions from TE
neurons are measured with uncertainty, and this must contribute
to the scatter around the regression lines in TE.

Comparison with other studies
Previous studies of whether naturalistic stimuli are encoded with
less variability than other stimuli reached contradictory conclu-
sions. Rieke et al. (1995) reported that frogsong-like noise elicited
less variable responses than pure noise from frog auditory neu-
rons. In fly H1 visual neurons, de Ruyter van Steveninck et al.
(1997) reported that naturally moving stimuli elicited less variable
responses than constant stimuli. However, when Warzecha and
Egelhaaf (1999) studied the H1 neuron, they reported that the
variability was the same across the two conditions. Our results in
monkey visual cortex agree more closely with the results in fly H1
visual neuron of Warzecha and Egelhaaf (1999) than with those
of de Ruyter van Steveninck et al. (1997).

In another study, Warzecha et al. (2000) reported that in fly H1
neuron, variance of spike count depends very little on mean spike
count except for very low values of the mean. In contrast, we find
a strong relation between mean and variance of spike count across
the entire range of observed means for neurons from monkey V1
and TE. Warzecha et al. (2000) exclude onset transients from
their analysis; this may contribute to the difference between the
two sets of results.

Earlier, we presented an analysis of the mean–variance relation
in TE neurons from a monkey performing a delayed match-to-
sample task similar to the one in this paper (Gershon et al., 1998).
The slopes reported for 14 of 19 of those neurons were �1, in
contrast to the results presented here, where the slopes for 19 of
20 neurons are �1. The earlier experiment restricted eye move-
ment more than the TE experiment described here (gaze was
required to remain within 1° of the fixation point, as opposed to
5° here), but restricting the current data to trials in which gaze
remained within 1° of the fixation point did not significantly
change our results. We are not certain why the slopes differ
between the two data sets. Similarly, whereas in Gershon et al.
(1998) we found that the truncated Gaussian model provided a
sufficiently good fit for some purposes to spike count distributions
from TE neurons, in the data here �50% of the spike count
distributions are consistent with a truncated Gaussian model (�2

test; p � 0.05). We are not certain why the current data are not
well modeled by a truncated Gaussian.

In the experiments described here, we used only stationary
black-and-white stimuli. Stimuli involving color or motion might
give rise to a different mean–variance relation, as suggested by
Croner and Albright (1999). In addition, we chose the stimulus
presentation length in V1 (300 msec) to approximate the time
between saccades during free viewing. However, our paradigm
does not duplicate the correlations in time-varying images (Dong
and Atick, 1995). Thus, the relation between mean and variance
of spike count when images are brought onto receptive fields by eye
movements might be different from the relation observed here.

Implications for neural coding
We have shown that assuming the existence of stimuli that elicit
on average very small numbers of spikes, or elicit no spikes at all,
results in significantly larger estimates of channel capacity than
does assuming that the experiment has revealed the smallest

achievable mean response. The large effect of very small re-
sponses on channel capacity suggests a link to theories of sparse
coding in which few neurons should respond to any particular
stimulus (Rolls and Tovee, 1995; Olshausen and Field, 1996a;
Vinje and Gallant, 2000).

Stimulus features can be encoded not only by spike count but
also by spike timing, although the nature and time scale of that
encoding remain the subject of debate (Heller et al., 1995; Victor
and Purpura, 1996; Buracas et al., 1998; Sugase et al., 1999;
Reinagel and Reid, 2000). We have previously shown (Wiener
and Richmond, 1999) that high-frequency components of timing
(principal components beyond the fourth) have very low signal-
to-noise ratios and can therefore be expected to carry very little
information. Although we have not directly examined temporal
encoding here, we have shown that the variability of a low-
frequency measure of spike timing (the second principal compo-
nent of the responses) is closely linked to the average spike count
of a set of neuronal responses. This suggests that much of the
information that could be carried by spike timing is linked to
spike count. Principal component analysis is a linear method and
may not efficiently detect some aspects of timing. However, we
and others have shown that highly nonlinear details of
millisecond-precision spike timing are closely related to spike
count and its variability (Oram et al., 1999; Richmond et al., 1999;
Baker and Lemon, 2000). Thus, two different lines of reasoning
point toward the conclusion that consistency of spike-count en-
coding implies consistency of many aspects of spike timing across
stimulus sets in V1 neurons and across behavioral contexts in TE
neurons.

Conclusion
We have shown that responses elicited by different kinds of
stimuli from neurons in V1 and responses elicited by stimuli
shown in different behavioral contexts from neurons in TE share
statistical properties that are important in determining how much
stimulus-related information the responses contain. A single re-
gression characterizes the relation between log(mean) and log-
(variance) of spike count in different behavioral contexts in TE.
Although the difference between a model with a single regression
and a model using a separate regression for each stimulus set was
significant in some V1 neurons, the differences in predicted vari-
ances were so small as to be irrelevant for decoding, even when
comparing naturalistic and geometric stimuli. The advantage of
consistent encoding is its simplicity; downstream neurons (and
researchers) can process or decode all signals from a neuron in
the same way, without needing to determine which encoding rules
are in effect.
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